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ABSTRACT

A computer program is presented for the small strain analysis of
plane structures in the strain hardening elastic-plastic range. The
finite element displacement method is used to perform the linear
analyses in the iterative scheme. Bar and constant strain isotropic
plane stress triangles are available for use in constructing idealiza-
tions. The use of ten different sets of material properties, three
different material laws, and incremental proportional loading are
available as options. Good correlation is shown with available test

data and theoretical solutions.

The distribution of this abstract is unlimited.
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SECTION 1

INTRODUCTION

This report describes a computer program for the stress analysis
of plane structures in the elastic-plastic range by the finite element
method. The program can handle bar and triangular plate elements so
that it is applicable to trusses and to the analysis of in-plane stresses
in reinforced plates. The material behavior is assumed to be isotropic
and the user has a choice of three types of stress-strain laws and ten

different materials.

A numerical step by step procedure for obtaining solutions which
satisfy the requirements of the incremental theory of plasticity for
materials which obey the Mises yield condition and the associated flow
rule is used in the program. At each step in the solution, an iterative
procedure is used to find the correct values of the strain increments.
Changes in plastic strain are accounted for by the addition of fictitious
plastic forces to the actual loading on the structure in such a way that
the deflections of the structure under the modified loading with
assumed elastic behavior are equal to the actual deflections. A
modified form of the computer program given in Reference 1 is used

to obtain elastic solutions.

The finite element method originally developed for elastic stress
analysis was extended to apply to inelastic material behavior by Padlog
(Reference 2) et al. Further studies of the use of the method in
elastic-plastic problems have been made, for example, at MIT

(Reference 3) and the California Institute of Technology (Reference 4).
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The method has been extended to apply to anisotropic materials by
Jensen (Reference 5). Marcal and King (Reference 7) have applied

the method to problems of plane stress and strain and to axisymmetric
problems. However, the computer programs necessary for the ap-
plication of the method have not been published. The purpose of this

report is to make such a program Vavailable.

The following section of the report presents a detailed explanation
of the method of analysis. The application of the program is demon-
strated by examples in Section III. Directions for the use of the
computer program are given in Section IV, Listing of the program

and sample data sets are given in the Appendix.
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SECTION II

METHOD OF ANALYSIS

The analysis procedure used in the computer program is described
here. The method, first used by Padlog for the solution of problems
involving plastic flow and creep, is given here in a slightly modified
form. The well known formulas for the stiffness of bars and triangular
plate elements are first presented. Then the step by step iterative
procedure used for the solution of problems in which plastic flow

occurs is described.
1. ELEMENT PROPERTIES

The two types of elements to be considered in this analysis (the bar
and the triangular plate) are shown in Figure 1. The coordinates of
the end points of the bar and the vertices of the triangle are referred
to a fixed coordinate system in the plane. The cartesian components
of the nodal displacements for each of these elements comprise the
element displacement vector X, The ordering of the displacement
components is shown in Figure 1. The total element strains designated
by the vector € can be expressed in terms of the nodal displacements

by an equation of the form

€ = BX (1)
The stresses are related to the elastic strains ¢® = € - ¢P by
Hooke's law
o=Ce (2)
3
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The nodal forces F corresponding to given displacements X are found
by the principle of virtual work. That is
X'F= [T odv (3)
v
where X and € are the virtual displacement vector and the corres-
ponding strain vector, respectively, and the integration is carried out

over the volume of the element. Prime superscripts denote transposed

matrices. Using Equations 1 and 2 in Equation 3 gives the results
Y'[F-fe'cedvx+fe'CdVe"]=o (4)
v v

Or, since the elements of X are arbitrary, then

F+ FP = kx (5)
where
k = fe'cedv (6)
v

is the element stiffness matrix and
FP = DeP (7)
is the vector of plastic forces in which

o= [8 cdv (8)
\"
The definitions of the nodal force and displacement vectors and of the

matrices C, B, D, and k for bars and triangular plate elements are:

Bar Element

X"=[u|,v|,uz, V2] (9)
P [Fxl 8 Fyl . sz' Fyz] (10}
- =_|—2—[—‘z|'-yz|"zl'yz|] ()
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in which L is the length of the bar and
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The absolute value of h equals twice the area of the triangular element.

[ v 0]
¢=—E=| » | 0 (23)
l-v
0O (l-vy)r2
in which v = Poisson's ratio
F- -v C ]
Y32 Y32 1 X 32
Vis2 X3z -Civs,
E tInl Y3 VY3, “C xy
O & s l (24)
R/Y “VY g C, Xay
ST X2 = s

where C; = (1-»)/2 and t is the element thickness.

Et
21l (1-23

x|

(25)

k =

where

(26)

x|
n
fal
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_ 3 \
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Tss A PTE PR PYRFTIN T44 = x§|+ C|y§| J

s = g Wy ¥ €00 By Bk, S Euyy vy
Kgg = szu*'cu"z“: v Kgg T ¥Ry ¥y = CyXy ¥g

res = "iu +C|V:|

2. ELASTIC-PLASTIC ANALYSIS

In the elastic range of material behavior the equilibrium equations
for a structure composed of plate and bar elements of the type considered

here can be written

F = KX (28)

where the force and displacement vectors now have as their components
the cartesian components of force and displacement at all the nodes

and K is the assembled stiffness matrix for the whole structure. The
solution of Equatican 28 for the unknown displacement is given

symbolically by

X = K F (29)
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The displacements known, the element strains can be obtained from
Equation 1 and the stresses from Equation 2. However, when the
stresses reach the intensity required to cause plastic flow, it becomes
necessary to determine the increments of plastic strain caused by the
load increment. The material is assumed to obey the Mises yield
condition and the associated flow rule. For plane stress the following

equations apply

== 2 2 2 2 -p
a‘-(a‘x-a;‘a'y+cry+3rxy) = H(e ) (30)
ATP = L(A 92+A PAP p° . 1 _p2y\'?
< 5\ B¢ e Qe+ De +7l-7xy) (31)
\
p _ A&P
AEx = E(ZO&-O‘)’)
=P
p . Ae
Aey = ZE(ZO'Y—O'X) e (32)
—P
P . A€
Ayxy 3 = LE%

where o and €P are the effective stress and the effective plastic
strain, respectively, and where H(Zp) is the stress-plastic strain

relation for uniaxial stress.

If it is assumed that the response of the structure to the removal
of a load increment will be completely elastic then Equation 28 can be

modified to account for plastic flow as follows
KX = F + FP (33)

where X and F are the displacement and load after the application of

the increment and FP is the vector of plastic forces corresponding to
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the plastic strains. The plastic strain increments caused by the incre-
ment of load must satisfy Equations 32 and for an element undergoing

plastic flow the stresses must satisfy the yield condition (Equation 30).

The following step by step iterative method is used to obtain

solutions:
1. An increment is given to the applied loads.

2. New values of displacement are found from Equation 33 using
the current values of the plastic forces (these will be zero for

the first step).

3. The displacements are used to compute total strains, elastic

strains, stresses, and the effective stress.

4, If the new value of the effective stress is greater than the
largest previous value, the element is plastic and the
effective stress is used to determine a new value of the

effective strain.

5. Plastic strain increments computed from Equations 32 are
added to the current values of the plastic strain and new

values of the plastic forces are calculated.

6. If the increment in effective plastic strain is sufficiently small
the iteration is complete and a return to step 1 is made, if not

a return is made to step 2 and a new cycle begun.

10



AFFDL-TR-68-39

This procedure is applied to each of the elements and the decision to
start a new step (apply a load increment) is based on the largest plastic

strain increment found among all the elements.

An important feature of the method is the way in which the
effective plastic strain is computed from the new value of the ef-
fective stress at each iteration. If the inverse of Equation 30 is used
to give <P as a function of & the solution may become unstable. This
becomes obvious when one considers the case of the elastic, perfectly
plastic material for which the inverse of the function H(€P) does not
exist. To avoid this difficulty the "constant strain' method of
Reference 2 is used. In this method the total strain €; is taken equal
to the sum of the value of €P computed in the previous iteration

and o/ E.

The stress-strain law can be written in the form

or
g = ——" + e (34)

The new value of €P can be found from Equation 34 without difficulty.

The criterion used in step 6 of the iterative procedure given above,
to decide whether the plastic strains have been determined with suf-
ficient accuracy, is the size of the ratio of the increment in effective
plastic strain to o/g. This ratio is a measure of the difference
between the ordinates to the theoretical stress strain curve and the

curve that is actually being used at that step in the calculation.

160!
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3. STRESS-STRAIN LAWS

The following three types of stress-strain laws are available for

use in the computer program. Each of them is a three parameter law.

Type 1 - Ramberg-Osgood Law

3o n
g | o
S = 4 ——
‘" E T 7E (cr. )
in which
E — Young's modulus

— secant yield stress (stress at which the

o
' secant modulus = 0. 7E)

n — shape factor

Type 2 - Goldberg-Richard Law

n1-1/n
: " Eet
o = €
t o,
in which
E — Young's modulus
oy — maximum stress
n ~~— shape factor
Type 3 - Bilinear Law
o = Ee . for o < o
t y
%
= - >
o 0'y+E|(e' E), for o2 o

12
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in which
E — Young's modulus
oy — yield stress
E, — Slope of the plastic portion of the

stress-strain curve

To reduce computing time a linearized form of the Ramberg-Osgood
law is used in the program. This law is fitted by a series of straight
line segments which match the actual curve at 100 points in the interval

O0< €y £ 200,/E. If values of €; outside this range are en-

countered the exact formula is used.

13
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SECTION III

EXAMPLES

1. NONLINEAR TRUSS

To illustrate the use of the program a solution for the member
stresses and the tip deflection of the cantilever truss shown in
Figure 2 is obtained. A stress-strain relation of the Ramberg-Osgood
type is assumed with values of E = 10.3 x 106, oy = 40.95 x 103,
andn = 7. A solution by another method is given in Reference 6. A
comparison of the stresses obtained by the two methods is shown in
the table in Figure 2. The tip displacement is shown as a function of
the load in Figure 3. The displacements obtained by the two methods

agree so closely that both solutions are represented by a single curve.
2. SHEAR LAG SPECIMEN

As a second example, solutions are obtained for the shear lag
specimen tested in Reference 3 shown in Figure 4. Two solutions are
obtained. In the first solution the same idealization of the structure
is used as that used in Reference 3 (see Figure 5). The second
solution is found using the idealization shown in Figure 6. Values of
the Ramberg-Osgood constants of E = 10,2 x 106, oy = 46.6 x 103,
and n = 10 were used. These correspond to the values for the RO2

stress-strain curve of Reference 3.

14
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4 30 in 5 30 in 6
: ® 7
0 ®
| 2 3l X
1 P= 10 kips
FORCE, in kips
ELEMENT
Ref. 6 Present Analysis
1 11, 26 11,18
2 4., 23 6. 1.9
3 = 16,27 = §. 31
4 =11, 24 e HIEES |
5 - 0.51 = 0. 52
6 8.-35 B B3
i 6. 91 6.95
8 - 5.09 - 5,55
9 - 4,15 - 4,17
10 4, 47 4. 44

Figure

2%
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Displacement X in the Nonlinear Truss

R
"

L o 10 kips

Xmox =

1.04 in

Value of

0 L 1 L L
0 0.2 0.4 0.6 0.8 1.0

Value of

Pmox

Figure 3. Load Versus Tip Displacement - Nonlinear Truss
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+

Figure 5. MIT Shear Lag Specimen - Configuration I

+

T -

Figure 6. MIT Shear Lag Specimen - Configuration II
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-3

Strain = inZin x 10

25

20

10

® Data
I - MIT Idealization (Fig 5)
II - Improved ldealization (Fig 6)

1
S 10 15 20

Load —Ib x 10°

Figure 7. Comparison of Test Results of Shear Lag
Specimen with Finite Element Analyses,
Axial Strain at Center of Stiffener
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A comparison of the results of these solutions with the test data for
axial strain at the center of the stiffener is given in Figure 7. While
the second solution is in better agreement with the test results than the
first, the agreement at large values of the load is poor. A still more
refined idealization would probably improve the solution but, as shown
in Reference 5, much of the discrepancy is due to the inadequacy of the

tensile stress-strain data in the range of large strains,
3. PERFORATED STRIP

Theocaris and Marketos (Reference 8) obtained results for a
linear strain-hardening aluminum strip with a ratio of hole diameter

to strip width of 1:2., The material properties were

24. 3 kg/mm?

i

yield stress

plastic modulus 225. 0 kg/mm?

Young's modulus = 7000. 0 kg/mm?2

H

The finite element idealization of the test specimen is shown in
Figure 8; 116 nodes and 172 triangular elements were used. A
comparison of measured and computed values of the maximum strain
in the y direction at the edge of the hole is given in Figure 9, The
agreement between theory and experiment is fairly good. The same
test is used by Marcal and King (Reference 7) for comparison with
the results of their analysis and about the same degree of agreement

is obtained.

20
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SECTION IV

DESCRIPTION OF COMPUTER PROGRAM

1. INTRODUCTION

The FORTRAN IV program for the elastic-plastic analysis of
plane structures composed of bar and triangular plate elements is
described in this section. The correspondence between the program
variables and the stress-strain law parameters for each of the three

laws available is given in Table I.

TABLE I

CORRESPONDENCE BETWEEN PROGRAM VARIABLES
AND STRESS-STRAIN LAW PARAMETERS

Program Variables
Stress-Strain Law
ILAW E EE1 EE2 PRR
Ramberg-Osgood 1 E 4 n v
Goldberg-Richard 2 E 2 n v
Bili 3 E E
ilinear cry 1 v

2. INPUT DATA AND DESCRIPTION OF OUTPUT

The geometry of the structure is determined by specifying the x
and y coordinates of each node with respect to a fixed set of coordinate
axes and the thickness (cross-sectional area in the case of bars) of the
elements. Up to 225 nodes and 400 elements can be handled. The

program uses a subroutine for the solution of simultaneous equations

in band form written by Professor E. L. Wilson of the University of
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California. Great economies in storage requirements and in time
required for solution are achieved in this way; however, the bandwidth
of the equations defined by the idealization of the structure is limited in
size, To meet this limitation on bandwidth the difference between the
node numbers on any element must be 9 or less. Instructions for in-

creasing the bandwidth are given in Table II,

The displacement components in the x and y direction can be
specified at any node or a node can be required to move along a line
with a specified slope. Boundary conditions can be specified at up to

29 nodes.

The x and y components of load can be specified at any node.

Distributed loads must be treated as concentrated at the nodes.

The number of equal increments (steps) into which the applied
loads and specified displacements are to be divided is specified as
input. It is also necessary to specify the number of the increment
at which the solution is to start. For example, if a number of incre-
ments NDIV = 20 is specified and a value of the starting increments
KSTART = 5 is used, one quarter of the load (displacement) will be
applied in the first step, the rest in 15 equal increments. If it is
desired to stop the solution at an intermediate step a value of KSTOP
may be specified. If the unloading solution is desired the value

IUNLD = 1 is used.

An error tolerance must be specified as input. After each cycle
of iteration the maximum error among all the elements is compared

with the specified tolerance, If the tolerance is met the next load

24
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TABLE II

PROGRAM MODIFICATION

The bandwidth is governed by the difference between the node numbers
of a given element. The largest such difference J determines the
bandwidth in this program by the formula MBAND = 2 * J + 3. This
number cannot be greater than 22 in the present program. This is a
rather small bandwidth, but it allows 225 nodes in a 32K core machine,
To change the applicable problem size of the program in terms of the
basic problem size parameters the following dimensions have to be

changed:

To Change:

1. Number of materials

2. Number of elements

3. Number of nodes

4, Bandwidth

5. Number of nodes with
boundary conditions

Change Dimensions of:

EE, EE1l, EE2, PRR, and TAB in
common statements (presently 10)

11, 12, 13, 14, NTYPE, Z, SEF,
SET, EEP, EXPL, EYP, EXYP in
common statement, JX in main
program, and modify equivalence
statements containing JX
(presently 400)

B, X, XCORD, Y, ICODE, FP, F
in common statements, FE in main
program, [ICODE in subroutine
DCODE, XX in subroutine ELEM
(presently 225 or 2 x 225 = 450)

B in common statements
(presently 22)

BC in common statements
(presently 30)

25
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increment is applied, if not, the iteration is continued. If the tolerance

on error is not met when the allowable number of iterations is reached

the solution is stopped. A detailed description of the input data format

is given in Table II.

TABLE III

INPUT DATA FORMAT*

Card 1
Col

Card 2
Col

Card 3
Col

Card 4
Col

TITLE CARD (72H)
Any alphanumeric information

1-72

PROPERTIES CARD (1415)

1- 5
6-10
11-15
16-20

21-25
26-30

31-35

NNODE
NELEM
ILAW
IUNLD

MAT
MAXBND

NBC

number of nodes (maximum 225)
number of elements (maximum 400)
1 Ramberg-Osgood Law

2 Goldberg-Richard Law

3 Bilinear Law

1 Unloading following loading

0 Loading only

number of materials used (maximum 10)
maximum bandwidth, MAXBND = 22
for this program

number of boundary conditions with
prescribed displacement. The
maximum number is 30 in this
program,

MATERIAL PROPERTIES CARDS (E15.8, 3F10.5)

modulus of elasticity

secant yield stress, ultimate stress,
yield stress

Poisson's ratio

shape parameter, plastic modulus

CONTROL CARD (615, F10.0)

1-15 EE
16-25 EE1
26-35 PRR
36-45 EE2

1= 5 NDIV

6-10 NIT
11-15 NPRINT
16-20 KSTART
21-25 KSTOP
26-30 NLOAD
31-40 TOL

number of load increments
maximum number of iterations per step
print output for each NPRINT incre-
ment. (e.g., if NPRINT = 3, for
increments 3, 6, 9 etc.)

number of increments at which
solution is to start

number of increments at which
solution is to stop

number of nodes at which loads are
specified

error tolerance

26
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TABLE III (CONTD)

Card 5 NODE CARDS (415, 5F10. 0)

Col 1- 5 Node number
6-10 IBCX = 1, if displacement in x-direction is
specified
11-15 IBCY = 1, if displacement in y-direction is
specified
16-20 IBCS = 1, if slope is specified
21-30 XCORD - x coordinate of the node
31-40 YCORD - 7y coordinate of this node
41-50 BCI - specified displacement in x-direction
51-60 BC2 - specified displacement in y-direction
61-70 BC3 - specified slope at the node
Card 6 ELEMENT CARDS (515, F10.0)
Col 1- 5 Element number
6-10 11 - nodes defining the element
11-185 12 - nodes defining the element
16-20 I3 - nodes defining the element
21-25 NTYPE - material type
26-35 Z - element thickness or cross-sectional
area

Card 7 LOAD CARDS (I5, 2F10.0)
1- 5 Node number
6-15 x-component of force
16-25  y-component of force

*NOTE: Input data information in Table III is self explanatory. The
use of more than one material, however, may need some clarification.
The number of materials ""MAT'" specified in the field of card 2 defines
the number of material properties cards. The sequencing of these
cards in turn defines "NTYPE" in the element card, for example, if
the element uses material specified in the second material proPerties
card, integer 2 is placed in the field corresponding to "NTYPE'.

27
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The nodal forces and displacements, the maximum error and the
number of the element in which it occurs are printed out at the end of
each step (increment), The cartesian components, principal values,
and direction of stress and strain are printed out at the user's option
by specifying a value of NPRNT as input. For example, a value of
NPRNT = 3 will cause the stresses and strains to be printed out for
increment numbers divisible by three., The directions of the principal

axes of stress are defined by

| -1 2T L4 r
= - — 1 —_—— - = < < —
¢ T a;‘-a'y' 2 ¢ 2

The value of ¢ in degrees is printed out. In the case of strain the

principal directions are defined by

= = e L. T b
¢ = 5 tan e =< e &

This value is also printed out since in general the principal axes of
stress and total strain do not coincide when plastic flow has taken

place.

The effective stress and the effective plastic strain are also given

as output for each element.

The input data is printed out at the start of the program to aid in

problem identification and checking.
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APPENDIX

COMPUTER PROGRAM LISTING

The FORTRAN IV Source Program and three sample data cases are
listed. The first case is the nonlinear truss with Ramberg-Osgood
representation of one material. This data is associated with Figures 2
and 3. The second case is the same truss problem slightly changed to
show the introduction of more than one material. The third case is
Configuration I for the MIT test specimen,

The source deck of the computer program described herein can be

obtained by contacting AFFDL (FDTR/BERKE), WPAFB-Ohio, 45433.
(513-25-53418).
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$18J0B
$IBFTC VERT

c
C

OO0

* &

10
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70
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90

ELASTIC PLASTIC FINITE ELEMENT PROGAM
WITH THREE STRESS STRAIN LAW OPTIONS

COMMON/AOD/ EE(10)4,EEL(1G)+EE2(10)PRR(10)

COMMON EJCCyGLl4E2,PRyEPRyX219Y214X319Y319X32,Y324XERR,
N2 yNELEMyKELyTLAW,MAT,NBC,
B(450422)48BC(3043),TAB(101+20)IFIX(2),

X(450) ¢ XCORO(225)4Y(225)+1CODE(225)
FP(450),F{450),

~o WUV wN -

NNOOE y MBAND
DIMENSION JX{(400+3),FE(450)
EQUIVALENCE (JXyE1)9(JX(401)412),(IX( 801),13)
EQUIVALENCE (IFIX(Ll)yIECX)y(IFIX{(2),18CY)

*%¥ READ AND PRINT DATA #x#&%xxk

READ (5,20)

fONE=1

FORMAT (72H BCO INFOGRMATION

1 )

WRITE (6,30)

FORMAT (1HL1)

WRITE (6,20)

READ(5440) NNOOENELEMyILAW,IUNLO,MAT,MAXBND,NBC
FORMAT(1415)

READ(5450) (EE(I), EEL(I)
FORMAT(E15.8,3F10.5)
READ(S46CINDIVyNIT yNPRNT 4 KSTARTKSTOP+NLOAD,TOL
FORMAT(615,F10.0)

IF(KSTOP.EQ,0) KSTOP=NDIV

GO TU(T70+904110)ILAW

WRITE(6480) (T+EE(T)sEEL(TI)EE2(T)+PRRITI)yTOLyI=14MAT)

+PRRUT)SJEE2(1),yI=1yMAT)

FORMAT (1HO14X18HRAMBERG 0SGUOD LAW/
115Xy 30HMATER[AL—======—ommommmmmmmme 13/
215X30HMOOULUS OF ELASTICITY=--===--- E12.4/
315X30HSECANT YIELO STRESS---——-—-=- E12.4/
415X3CHSHAPE PARAMETER--=—====—==-—--= E12.4/
515X30HPOISSON'S RAT[Q---=-=-===c-=~ FB.4/
615X3CHERROR TOLERANCE-===-=-=-cccco- FB8e4)
GO TG 130
WRITE(6,100) (I4EE(T)EEL(T)4EE2(T)4PRRII) 4TOLyI=1,MAT)

100 FURMAT(1HO14X2UHGOLOBERG RICHARO LAW/
115Xy 30HMATER [AL—= === m=ommmmmmmmm e ee 13/
215X30HMOOULUS OF ELASTICITY===o-moe E12.4/
315X30HULTIMATE STRESS-------==c-ouc El2.4/
415X30HSHAPE PARAMETER=======oc-oo—o- El12.4/
515X30HPOISSUN'S RATIQ-=======o-o-oc FBab/
615X30HERROR TOLERANCE======-=ocn-on FB.4)
GO TO 130

110 WRITE(6+1120) (T+EE(T)EEL(T)EE2(T)+PRR{I)+TOL,yI=14MAT)
120 FORMAT(1HO14X12HBILINEAR LAW/

115Xy 30HMATERIAL === === mmmm e m e e e e I3/
215X3CHMCOULUS OF ELASTICITY---==--- El2.4/
315X30HYIELO STRESS-==-=---e--—-m———— El12.4/
415X30HPLASTIC MODULUS-==-===-=====—= El2.4/
S15X30HPOISSON'S RATIQO------=-=-=-=-- F8.4/
615X30HERROR TOLERANCE-======—==—-—-- F8.4)

130 WRITE (6+140)NNUOEyNELEMyNOIV NIT
140 FORMAT(1HOl4X30HND. OF NODES NNOOE =14/15X30HNO.

33

[1(4G60),121400),13(400)yNTYPE(400)4+2(400),14(400),
SEF(400),SET(400)EEP(400),EXPL({400)+EYP(400)4EXYP(400),

VER70000
VER70001
VERT70002
VER70003
VER70004
VER70005
VERT0006
VERT70007
VER70008
VER70009
VER70010
VER70011
VERT70012
VERT0013
VER70014
VERT70015
VERT70016
VERT0017
VER70018
VERT0019
VERT70020
VERT70021
VERT0022
VER70023
VER70024
VER70025
VEKT70026
VERT70027
VERT70028
VER70029
VER70030
VEK70031
VER70032
VERT0033
VERT70034
VERT70035
VERT70036
VERTO0037
VER70038
VERT70039
VER70040
VERT70041
VERT70042
VERT70043
VERTOU44
VERT0045
VERT0046
VERT0047
VER70048
VERT70049
VERT0050
VERT0051
VER70052
VERT0053
VEK70054
VER70055
VERT0056
VERT0057
VERT70058
VER70059

NDF ELEMVERT70060
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(s N aKel

OO0

aoon

OO0

1ENTS NELEM =I4/15X30HNO. OF STEPS NDIV =I4/15X30VER70061
2HNO. OF ITERATIONS/STEP NIT =14) VER70062

DO 150 I=1,HBC VERT0063

DO 150 J=1,3 VERT0064

150 8C(I,J)=0 VERT0065
IC=1 VERT0066
WRITE(64160) VERT0067

160 FORMAT(25HOBOUNDARY CONDITION ARRAY/10HO NODAL PT15X1HX23X1HY VER70068
120XTHSLIDING/1H 14X4HCODETXSHVALUE9X4HCODE 7X5HVALUE9X4HCODE VERT0069
2TX5HVALUE) VERTO0TO
VERT70071

**¥* NODE COORDINATES AND BOUNDARY CONDITIONS *%*x* VERT0072
VERT0073

DO 200 J=1,NNODE VERT0074
READ(5,4170) K,18CX,18CY,18CS,XCORD(K),Y(K),BC1,8C2,BC3 VER70075

170 FORMAT(415,5F10.0) VERT0076
IFCIBCX+IBCY+IBCS.NE.O) WRITE(6,180)K,IBCX,8C1,IBCY,BC2,IBCS,8(3 VER70077

180 FORMAT(I7y3Xs3(185,1PE17.7)) VER70078
ICODE(K)=IBCS+10*IBCY+100%[BCX VERT0079
IF(BC1+BC2+BC3.EQ.O0.) GO TO 200 VER70080
ICODE(K)=ICODE(K)+IC#*1000 VER70081
BC(ICy1)=BC1 VERT0082
BC(IC,2)=BC2 VERT0083
BC(IC,3)=8BC3 VER70084
IC=1C+1 VERT0085
IF(IC.LE.NBC)GO TO 200 VER70086
WRITE(6,190) VERT0087

190 FORMAT(54HO MORE THAN 29 NODES HAVE NON ZERO B8OUNDARY CONDITIONS) VERT70088
GO TU 620 VERT0089

200 CONTINUE VER70090
VERT0091

**x%%x ELEMENT PROPERTIES *%xx%xx VER70092
VERT0093

READ(5y210) TKy IL(K) 9 E2{K) 9 I3{K) yNTYPE(K) Z(K) 9J=1,NELEM) VER70094

210 FURMAT(515,F10.0) VER70095
VERT70096

*x¥x  LOADS *%¥x VERT0097
VER70098

N2=2%*NNODE VER70099

DO 220 K=1,N2 VERT0100

220 F(K)=C VER70101
IF(NLUOAD.EG.OJ) GO TC 250 VERT70102

DO 230 K=1,NLOAD VER70103

230 READI(54240)JyF(2%J=1)yF(2%]) VERT0104
240 FORMAT(15,2+10.0) VERT0105
250 CONTINUE VERT0106
WRITE(6+260) (KyXCURD(K),F({2%K-1), Y(K), ,F(2%*K), ICODE(K)4+K=1,NNODE) VERT70107

260 FORMAT(10HO NODAL PT8XTHX-COORDBXTHX-FORCE8XTHY-COORDS8XTHY-FORCE VER70108
111X4HCODE//(4Xy13,5X4F15.4,115)) VERT0109
WRITE(6,2T70) VERT70110

270 FORMAT(1HO///10Xy9OHELEMENT NODE 1 NODE 2 NODE 3 ELEMENVERTO0111
1T TYPE AREA OR THICK. MATERIAL TYPE,//) VER70112

DO 300 K=1,NELEM VER70113
IF(I3(K)eEQeO) WRITE(69280) KyI1(K)yI2(K)9I3(K)yZ(K)NTYPE(K) VERT70114
IF(I3(K)eNELG) WRITE(64290) KyI1(K)yI2(K)yI3(K)Z(K)yNTYPE(K) VERTO115

280 FORMAT( 6Xs419,11Xy3HBAR,E22.5,114) VERTO116
290 FORMAT( 6X,419,11Xy5HPLATE,E20.5,114) VERT70117
300 CONTINUE VER70118
VER70119

INITIALIZATION VER70120
VERT0121

310 XDIV=NDIV VERT0122
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OO0

OO0 OO0 (g XaNel

GO TO0(3205340,340),1LANW VERT0123

320 CONTINUE VERT0124
D0 330 I=1,MAT VER70125
E=EE(]) VER70126
E1=EEL1(1I) VERTO0127
E2=EE2(1) VER70128
CC=E1l/E VERT0129
Gl=(7.0%E/3.,0)**(1.0/E2)*E1%%x(1.0-1.0/E2) VER70130
CALL TABLE(I) VER70131

330 CONTINUE VERTO0132
340 CONTINUE VER70133
VERTO0134

*kkk OETERMINE BANO WIDTH *¥*¥x% VER70135
VERTO0136

00 350 K=1,NELEM VERT70137
I14(K)=13(K) VER70138

350 IF(I3(K)EQ.0) IUX({Ky3)=UX{(Kyl) VEKT70139
J=0 VER70140

00 380 N=1,NELEM VER70141

DO 380 I=1,3 VER70142

DO 370 L=1,3 VERT70143
KK=TABS{JUX(NsI)=JX(N,L)) VERT70144
IF{KK=-J)370,370,360 VERT0145

360 J=KK VERT01l46
370 CONTINUE VERT0147
380 CONTINUE VER70148
MBAND=2%J+3 VER70149
IF(MBAND.GT .MAXBND) WRITE(64390) MBAND VER70150
IF(MBANO.GT .MAXBKND) GO TO 10 VER70151

390 FORMAT(1HO10X20HBAND wWIOTH TOO LARGESX6HMBAND=14) VERT70152
DO 400 I=1,NELEM VERT70153

400 I3(1)=14a(1) VERT70154
00 410 I=1,N2 VERT0155

00 410 J=1,MBANO VERT0156

410 B(I,J)=0. VERT0157
VER70158

CALCULATION OF STIFFNESS MATRIX VERT0159
VER70160

CALL STIFF VER70161
VERT0162

kk¥k% REDUCE MATRIX *&kkx VER70163
VEKT0l 64

CALL SYMSOL(1) VERT70165
VERTOLl606

kkkk JNCREMENT LOAOS,AO0D PLASTIC FORCES ANO SOLVE FOR DISPLACEMENTS*%VERT0167
VER70168

DO 420 I=1,NELEM VERT0169
SET(I)=0 VERTO170
SEF(1)=0 VER70171
EEP(I)=0 VERT0172
EXPL(I)=C VER70173
EYP(I)=0 VERT0174

420 eXYP(I)=0 VERTOL17S5
KO=KSTART-1 VERTO0176
KU=K0 VERT70177

DU 430 I=1,N2 VERTO0O178

430 FP(1)=0 VERT70179
GO TO 490 VER70180

440 WRITE (69450)KUs (I 4FE(2%I-1),FE(2%]) X(2%]=1),X(2%]),1=1,NNODE) VER70181

450 FORMAT(1H120X38HFORCES AND DISPLACEMENTS FOKR INCREMENT,I14//10X4HNOVER70182
1DESXTHX-FORCEBXTHY-FORCEIXBHX-0ISPL.7XBHY-DISPL./(9X13,2F15.3,5X2EVERT0183

215.4 1))

35

VERT0184
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WRITE (6,460)XERRyKEL,IT

460 FURMAT(13HOMAX, ERRUR =FB8.5,5X14HIN ELEMENT NO.I4,5X17HNO.

LATIONSI4)
470 IF(MOUD(KUyNPRNT))490,480,490
480 CALL OUTPT
IF(KU.EG.KSTOP)IGO TO 620
GO TU 500
490 IF(KO.EQ.KSTOP) CALL OUTPT
IF(KU.EC.KSTUP)GO TO 620
500 KO=KU+IONE
KU=KU+1
IF(KG-NDIV)S51G,510,620
510 XKO=KO
DO 520 I=1,N2
520 FE(I)=XKUG/XDIVXF(I)
DO 530 K=1,NELEM
530 SEF(K)=SET(K)
IT=0
540 DO 570 I=1,NNODE
IF(ICODE(I).EQ.0) GO TO 570

CALL DCODE(ICODE,I,IBCS,IBCX,IBCY,ICyIX,yIYyNBC)

IF(IBCS.NEL.1) GO TO 550
ALF=BC(IC,3)
FPOIX)=FP(IX)+ALF*FP(IY)
FP(IY)=0,

550 DO 560 N=1,¢
IF(IFIX(N).NEs1) GO TO 560
IR=IX+N-1

560 CUNTINUE

570 CUNTINUE

*¥¥x¥ SOLVE FOR DISPLACEMENTS *¥%¥

OO0

DO 580 I=1,n2
580 X(I)=te(I)+FP(1I)
CALL SYMSOL(Z2)

e NeNaNeal

D0 590 I=1,N2
590 FP(I)=0C

XERR=D.C

KEL=0

CALL STRAIN

e NeNe]

IT=1T+1
IF(XERR-TUL) 440,440,600
600 IF(IT-NIT)54(,6104610
610 KO=mULIV
TUNLD=0
50 TOU 44C
620 [F(IUNLD.EGC.J) GC TOU 10
IUNLD=0
{ONE==-1
KSTUP=0
GO TC 44C
=ND
$SIBFTC ELM

CALCULATE TOGTAL STRAINS,STRESSES AND PLASTIC
FURCES AND STRAINS FUK EACH ELEMENT

wk%xk PICK LARGEST ERROR AND DETERMINE WHEN TO REITERATE #k%x

36

VERTO185

OF ITERVER70186

VER70187
VER70188
VERT70189
VER70190
VER70191
VERT70192
VER70193
VER70194
VER70195
VER70196
VERTO197
VER70198
VER70199
VER70200
VER70201
VERT70202
VER70203
VER70204
VERTO0205
VER70206
VERT70207
VERT70208
VER70209
VERT0210
VER70211
VERT70212
VER70213
VER70214
VERT70215
VERT70216
VER70217
VERT70218
VER70219
VERT0220
VER70221
VERT70222
VERT70223
VER70224
VERT70225
VERT0226
VERTO0227
VER70228
VERT0229
VERT70230
VER70231
VLRT70232
VERT70233
VERT70234
VERT0235
VERT0236
VERT70237
VERT0238
VERT70239
VERT0240
VER70241
VERT70242
VER70243
VERT0244
VERT0245
ELM 0000
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SUBROUTINE ELEM(M)

COMMON/ADD/ EE(10),EE1(10),EE2(10),PRR(10)

COMMON EyCCyGLl9E24yPRyEPRyX219Y219X3149Y31yX32,Y324X